

Python Elasticsearch Client

Official low-level client for Elasticsearch. Its goal is to provide common
ground for all Elasticsearch-related code in Python; because of this it tries
to be opinion-free and very extendable.

For a more high level client library with more limited scope, have a look at
elasticsearch-dsl [https://elasticsearch-dsl.readthedocs.io/] - it is a more pythonic library sitting on top of
elasticsearch-py.

Compatibility

The library is compatible with all Elasticsearch versions since 0.90.x but you
have to use a matching major version:

For Elasticsearch 2.0 and later, use the major version 2 (2.x.y) of the
library.

For Elasticsearch 1.0 and later, use the major version 1 (1.x.y) of the
library.

For Elasticsearch 0.90.x, use a version from 0.4.x releases of the
library.

The recommended way to set your requirements in your setup.py or
requirements.txt is:

Elasticsearch 2.x
elasticsearch>=2.0.0,<3.0.0

Elasticsearch 1.x
elasticsearch>=1.0.0,<2.0.0

Elasticsearch 0.90.x
elasticsearch<1.0.0

The development is happening on master and 1.x branches, respectively.

Example Usage

from datetime import datetime
from elasticsearch import Elasticsearch
es = Elasticsearch()

doc = {
 'author': 'kimchy',
 'text': 'Elasticsearch: cool. bonsai cool.',
 'timestamp': datetime.now(),
}
res = es.index(index="test-index", doc_type='tweet', id=1, body=doc)
print(res['created'])

res = es.get(index="test-index", doc_type='tweet', id=1)
print(res['_source'])

es.indices.refresh(index="test-index")

res = es.search(index="test-index", body={"query": {"match_all": {}}})
print("Got %d Hits:" % res['hits']['total'])
for hit in res['hits']['hits']:
 print("%(timestamp)s %(author)s: %(text)s" % hit["_source"])

Features

This client was designed as very thin wrapper around Elasticseach’s REST API to
allow for maximum flexibility. This means that there are no opinions in this
client; it also means that some of the APIs are a little cumbersome to use from
Python. We have created some Helpers to help with this issue as well as
a more high level library (elasticsearch-dsl [https://elasticsearch-dsl.readthedocs.io/]) on top of this one to provide
a more convenient way of working with Elasticsearch.

Persistent Connections

elasticsearch-py uses persistent connections inside of individual connection
pools (one per each configured or sniffed node). Out of the box you can choose
between two http protocol implementations. See Transport classes for more
information.

The transport layer will create an instance of the selected connection class
per node and keep track of the health of individual nodes - if a node becomes
unresponsive (throwing exceptions while connecting to it) it’s put on a timeout
by the ConnectionPool class and only returned to the
circulation after the timeout is over (or when no live nodes are left). By
default nodes are randomized before being passed into the pool and round-robin
strategy is used for load balancing.

You can customize this behavior by passing parameters to the
Connection Layer API (all keyword arguments to the
Elasticsearch class will be passed through). If what
you want to accomplish is not supported you should be able to create a subclass
of the relevant component and pass it in as a parameter to be used instead of
the default implementation.

Automatic Retries

If a connection to a node fails due to connection issues (raises
ConnectionError) it is considered in faulty state. It
will be placed on hold for dead_timeout seconds and the request will be
retried on another node. If a connection fails multiple times in a row the
timeout will get progressively larger to avoid hitting a node that’s, by all
indication, down. If no live connection is available, the connection that has
the smallest timeout will be used.

By default retries are not triggered by a timeout
(ConnectionTimeout), set retry_on_timeout to
True to also retry on timeouts.

Sniffing

The client can be configured to inspect the cluster state to get a list of
nodes upon startup, periodically and/or on failure. See
Transport parameters for details.

Some example configurations:

from elasticsearch import Elasticsearch

by default we don't sniff, ever
es = Elasticsearch()

you can specify to sniff on startup to inspect the cluster and load
balance across all nodes
es = Elasticsearch(["seed1", "seed2"], sniff_on_start=True)

you can also sniff periodically and/or after failure:
es = Elasticsearch(["seed1", "seed2"],
 sniff_on_start=True,
 sniff_on_connection_fail=True,
 sniffer_timeout=60)

Thread safety

The client is thread safe and can be used in a multi threaded environment. Best
practice is to create a single global instance of the client and use it
throughout your application. If your application is long-running consider
turning on Sniffing to make sure the client is up to date on the cluster
location.

By default we allow urllib3 to open up to 10 connections to each node, if
your application calls for more paralelism, use the maxsize parameter to
raise the limit:

allow up to 25 connections to each node
es = Elasticsearch(["host1", "host2"], maxsize=25)

Note

Since we use persistent connections throughout the client it means that the
client doesn’t tolerate fork very well. If your application calls for
multiple processes make sure you create a fresh client after call to
fork. Note that Python’s multiprocessing module uses fork to
create new processes on POSIX systems.

SSL and Authentication

You can configure the client to use SSL for connecting to your
elasticsearch cluster, including certificate verification and http auth:

from elasticsearch import Elasticsearch

you can use RFC-1738 to specify the url
es = Elasticsearch(['https://user:secret@localhost:443'])

... or specify common parameters as kwargs

use certifi for CA certificates
import certifi

es = Elasticsearch(
 ['localhost', 'otherhost'],
 http_auth=('user', 'secret'),
 port=443,
 use_ssl=True,
 verify_certs=True,
 ca_certs=certifi.where(),
)

SSL client authentication using client_cert and client_key

es = Elasticsearch(
 ['localhost', 'otherhost'],
 http_auth=('user', 'secret'),
 port=443,
 use_ssl=True,
 verify_certs=True,
 ca_certs='/path/to/cacert.pem',
 client_cert='/path/to/client_cert.pem',
 client_key='/path/to/client_key.pem',
)

Warning

By default SSL certificates won’t be verified, pass in
verify_certs=True to make sure your certificates will get verified. The
client doesn’t ship with any CA certificates; easiest way to obtain the
common set is by using the certifi [http://certifi.io/] package (as shown above).

See class Urllib3HttpConnection for detailed
description of the options.

Logging

elasticsearch-py uses the standard logging library [http://docs.python.org/3.3/library/logging.html] from python to define
two loggers: elasticsearch and elasticsearch.trace. elasticsearch
is used by the client to log standard activity, depending on the log level.
elasticsearch.trace can be used to log requests to the server in the form
of curl commands using pretty-printed json that can then be executed from
command line. If the trace logger has not been configured already it is set to
propagate=False so it needs to be activated separately.

Environment considerations

When using the client there are several limitations of your environment that
could come into play.

When using an http load balancer you cannot use the Sniffing
functionality - the cluster would supply the client with IP addresses to
directly connect to the cluster, circumventing the load balancer. Depending on
your configuration this might be something you don’t want or break completely.

In some environments (notably on Google App Engine) your http requests might be
restricted so that GET requests won’t accept body. In that case use the
send_get_body_as parameter of Transport to send all
bodies via post:

from elasticsearch import Elasticsearch
es = Elasticsearch(send_get_body_as='POST')

Running on AWS with IAM

If you want to use this client with IAM based authentication on AWS you can use
the requests-aws4auth [https://pypi.python.org/pypi/requests-aws4auth] package:

from elasticsearch import Elasticsearch, RequestsHttpConnection
from requests_aws4auth import AWS4Auth

host = 'YOURHOST.us-east-1.es.amazonaws.com'
awsauth = AWS4Auth(YOUR_ACCESS_KEY, YOUR_SECRET_KEY, REGION, 'es')

es = Elasticsearch(
 hosts=[{'host': host, 'port': 443}],
 http_auth=awsauth,
 use_ssl=True,
 verify_certs=True,
 connection_class=RequestsHttpConnection
)
print(es.info())

Contents

	API Documentation
	Global options

	Elasticsearch

	Indices

	Cluster

	Nodes

	Cat

	Exceptions

	Connection Layer API
	Transport

	Connection Pool

	Connection Selector

	Urllib3HttpConnection (default connection_class)

	Transport classes
	Connection

	Urllib3HttpConnection

	RequestsHttpConnection

	Helpers
	Bulk helpers

	Scan

	Reindex

	Changelog
	2.5.0 (dev)

	2.4.1 (2017-01-03)

	2.4.0 (2016-08-17)

	2.3.0 (2016-02-29)

	2.2.0 (2016-01-05)

	2.1.0 (2015-10-19)

	2.0.0 (2015-10-14)

	1.8.0 (2015-10-14)

	1.7.0 (2015-09-21)

	1.6.0 (2015-06-10)

	1.5.0 (2015-05-18)

	1.4.0 (2015-02-11)

	1.3.0 (2014-12-31)

	1.2.0 (2014-08-03)

	1.1.1 (2014-07-04)

	1.1.0 (2014-07-02)

	1.0.0 (2014-02-11)

	0.4.4 (2013-12-23)

	0.4.3 (2013-10-22)

	0.4.2 (2013-10-08)

	0.4.1 (2013-09-24)

License

Copyright 2013 Elasticsearch

Licensed under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Indices and tables

	Index

	Module Index

	Search Page

API Documentation

All the API calls map the raw REST api as closely as possible, including the
distinction between required and optional arguments to the calls. This means
that the code makes distinction between positional and keyword arguments; we,
however, recommend that people use keyword arguments for all calls for
consistency and safety.

Note

for compatibility with the Python ecosystem we use from_ instead of
from and doc_type instead of type as parameter names.

Global options

Some parameters are added by the client itself and can be used in all API
calls.

Ignore

An API call is considered successful (and will return a response) if
elasticsearch returns a 2XX response. Otherwise an instance of
TransportError (or a more specific subclass) will be
raised. You can see other exception and error states in Exceptions. If
you do not wish an exception to be raised you can always pass in an ignore
parameter with either a single status code that should be ignored or a list of
them:

from elasticsearch import Elasticsearch
es = Elasticsearch()

ignore 400 cause by IndexAlreadyExistsException when creating an index
es.indices.create(index='test-index', ignore=400)

ignore 404 and 400
es.indices.delete(index='test-index', ignore=[400, 404])

Timeout

Global timeout can be set when constructing the client (see
Connection’s timeout parameter) or on a per-request
basis using request_timeout (float value in seconds) as part of any API
call, this value will get passed to the perform_request method of the
connection class:

only wait for 1 second, regardless of the client's default
es.cluster.health(wait_for_status='yellow', request_timeout=1)

Note

Some API calls also accept a timeout parameter that is passed to
Elasticsearch server. This timeout is internal and doesn’t guarantee that the
request will end in the specified time.

Response Filtering

The filter_path parameter is used to reduce the response returned by
elasticsearch. For example, to only return _id and _type, do:

es.search(index='test-index', filter_path=['hits.hits._id', 'hits.hits._type'])

It also supports the * wildcard character to match any field or part of a
field’s name:

es.search(index='test-index', filter_path=['hits.hits._*'])

Elasticsearch

Indices

Cluster

Nodes

Cat

Snapshot
—

Exceptions

Connection Layer API

All of the classes responsible for handling the connection to the Elasticsearch
cluster. The default subclasses used can be overriden by passing parameters to the
Elasticsearch class. All of the arguments to the client
will be passed on to Transport,
ConnectionPool and Connection.

For example if you wanted to use your own implementation of the
ConnectionSelector class you can just pass in the
selector_class parameter.

Note

ConnectionPool and related options (like
selector_class) will only be used if more than one connection is defined.
Either directly or via the Sniffing mechanism.

Transport

Connection Pool

Connection Selector

Urllib3HttpConnection (default connection_class)

Transport classes

List of transport classes that can be used, simply import your choice and pass
it to the constructor of Elasticsearch as
connection_class. Note that the
RequestsHttpConnection requires requests
to be installed.

For example to use the requests-based connection just import it and use it:

from elasticsearch import Elasticsearch, RequestsHttpConnection
es = Elasticsearch(connection_class=RequestsHttpConnection)

The default connection class is based on urllib3 which is more performant
and lightweight than the optional requests-based class. Only use
RequestsHttpConnection if you have need of any of requests advanced
features like custom auth plugins etc.

Connection

Urllib3HttpConnection

RequestsHttpConnection

Helpers

Collection of simple helper functions that abstract some specifics or the raw
API.

Bulk helpers

There are several helpers for the bulk API since it’s requirement for
specific formatting and other considerations can make it cumbersome if used directly.

All bulk helpers accept an instance of Elasticsearch class and an iterable
actions (any iterable, can also be a generator, which is ideal in most
cases since it will allow you to index large datasets without the need of
loading them into memory).

The items in the action iterable should be the documents we wish to index
in several formats. The most common one is the same as returned by
search(), for example:

{
 '_index': 'index-name',
 '_type': 'document',
 '_id': 42,
 '_parent': 5,
 '_ttl': '1d',
 '_source': {
 "title": "Hello World!",
 "body": "..."
 }
}

Alternatively, if _source is not present, it will pop all metadata fields
from the doc and use the rest as the document data:

{
 "_id": 42,
 "_parent": 5,
 "title": "Hello World!",
 "body": "..."
}

The bulk() api accepts index, create,
delete, and update actions. Use the _op_type field to specify an
action (_op_type defaults to index):

{
 '_op_type': 'delete',
 '_index': 'index-name',
 '_type': 'document',
 '_id': 42,
}
{
 '_op_type': 'update',
 '_index': 'index-name',
 '_type': 'document',
 '_id': 42,
 'doc': {'question': 'The life, universe and everything.'}
}

Note

When reading raw json strings from a file, you can also pass them in
directly (without decoding to dicts first). In that case, however, you lose
the ability to specify anything (index, type, even id) on a per-record
basis, all documents will just be sent to elasticsearch to be indexed
as-is.

Scan

Reindex

Changelog

2.5.0 (dev)

elasticsearch-py 2.x is now available as elasticsearch2 from PyPI

2.4.1 (2017-01-03)

	don’t warn on empty data returned from server

	Propagate request_timeout to scroll calls

2.4.0 (2016-08-17)

	ping now ignores all TransportError exceptions and just returns
False

	expose scroll_id on ScanError

	increase default size for scan helper to 1000

Internal:

	changed Transport.perform_request to just return the body, not status as well.

2.3.0 (2016-02-29)

	added client_key argument to configure client certificates

	debug logging now includes response body even for failed requests

2.2.0 (2016-01-05)

Due to change in json encoding the client will no longer mask issues with
encoding - if you work with non-ascii data in python 2 you must use the
unicode type or have proper encoding set in your environment.

	adding additional options for ssh - ssl_assert_hostname and
ssl_assert_fingerprint to the default connection class

	fix sniffing

2.1.0 (2015-10-19)

	move multiprocessing import inside parallel bulk for Google App Engine

2.0.0 (2015-10-14)

	Elasticsearch 2.0 compatibility release

1.8.0 (2015-10-14)

	removed thrift and memcached connections, if you wish to continue using
those, extract the classes and use them separately.

	added a new, parallel version of the bulk helper using thread pools

	In helpers, removed bulk_index as an alias for bulk. Use bulk
instead.

1.7.0 (2015-09-21)

	elasticsearch 2.0 compatibility

	thrift now deprecated, to be removed in future version

	make sure urllib3 always uses keep-alive

1.6.0 (2015-06-10)

	Add indices.flush_synced API

	helpers.reindex now supports reindexing parent/child documents

1.5.0 (2015-05-18)

	Add support for query_cache parameter when searching

	helpers have been made more secure by changing defaults to raise an
exception on errors

	removed deprecated options replication and the deprecated benchmark api.

	Added AddonClient class to allow for extending the client from outside

1.4.0 (2015-02-11)

	Using insecure SSL configuration (verify_cert=False) raises a warning

	reindex accepts a query parameter

	enable reindex helper to accept any kwargs for underlying bulk and
scan calls

	when doing an initial sniff (via sniff_on_start) ignore special sniff timeout

	option to treat TransportError as normal failure in bulk helpers

	fixed an issue with sniffing when only a single host was passed in

1.3.0 (2014-12-31)

	Timeout now doesn’t trigger a retry by default (can be overriden by setting
retry_on_timeout=True)

	Introduced new parameter retry_on_status (defaulting to (503, 504,
)) controls which http status code should lead to a retry.

	Implemented url parsing according to RFC-1738

	Added support for proper SSL certificate handling

	Required parameters are now checked for non-empty values

	ConnectionPool now checks if any connections were defined

	DummyConnectionPool introduced when no load balancing is needed (only one
connection defined)

	Fixed a race condition in ConnectionPool

1.2.0 (2014-08-03)

Compatibility with newest (1.3) Elasticsearch APIs.

	Filter out master-only nodes when sniffing

	Improved docs and error messages

1.1.1 (2014-07-04)

Bugfix release fixing escaping issues with request_timeout.

1.1.0 (2014-07-02)

Compatibility with newest Elasticsearch APIs.

	Test helpers - ElasticsearchTestCase and get_test_client for use in your
tests

	Python 3.2 compatibility

	Use simplejson if installed instead of stdlib json library

	Introducing a global request_timeout parameter for per-call timeout

	Bug fixes

1.0.0 (2014-02-11)

Elasticsearch 1.0 compatibility. See 0.4.X releases (and 0.4 branch) for code
compatible with 0.90 elasticsearch.

	major breaking change - compatible with 1.0 elasticsearch releases only!

	Add an option to change the timeout used for sniff requests (sniff_timeout).

	empty responses from the server are now returned as empty strings instead of None

	get_alias now has name as another optional parameter due to issue #4539
in es repo. Note that the order of params have changed so if you are not
using keyword arguments this is a breaking change.

0.4.4 (2013-12-23)

	helpers.bulk_index renamed to helpers.bulk (alias put in place for
backwards compatibility, to be removed in future versions)

	Added helpers.streaming_bulk to consume an iterator and yield results per
operation

	helpers.bulk and helpers.streaming_bulk are no longer limitted to just
index operations.

	unicode body (for incices.analyze for example) is now handled correctly

	changed perform_request on Connection classes to return headers as well.
This is a backwards incompatible change for people who have developed their own
connection class.

	changed deserialization mechanics. Users who provided their own serializer
that didn’t extend JSONSerializer need to specify a mimetype class
attribute.

	minor bug fixes

0.4.3 (2013-10-22)

	Fixes to helpers.bulk_index, better error handling

	More benevolent hosts argument parsing for Elasticsearch

	requests no longer required (nor recommended) for install

0.4.2 (2013-10-08)

	ignore param acceted by all APIs

	Fixes to helpers.bulk_index

0.4.1 (2013-09-24)

Initial release.

 Python Module Index

 e

 		 	

 		
 e	

 	[image: -]
 	
 elasticsearch	

 	
 	
 elasticsearch.client	

 	
 	
 elasticsearch.connection	

 	
 	
 elasticsearch.helpers	

Index

 E

E

 	
 	elasticsearch (module), [1], [2]

 	elasticsearch.client (module)

 	
 	elasticsearch.connection (module)

 	elasticsearch.helpers (module)

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Python Elasticsearch Client

 		
 API Documentation

 		
 Global options

 		
 Ignore

 		
 Timeout

 		
 Response Filtering

 		
 Elasticsearch

 		
 Indices

 		
 Cluster

 		
 Nodes

 		
 Cat

 		
 Exceptions

 		
 Connection Layer API

 		
 Transport

 		
 Connection Pool

 		
 Connection Selector

 		
 Urllib3HttpConnection (default connection_class)

 		
 Transport classes

 		
 Connection

 		
 Urllib3HttpConnection

 		
 RequestsHttpConnection

 		
 Helpers

 		
 Bulk helpers

 		
 Scan

 		
 Reindex

 		
 Changelog

 		
 2.5.0 (dev)

 		
 2.4.1 (2017-01-03)

 		
 2.4.0 (2016-08-17)

 		
 2.3.0 (2016-02-29)

 		
 2.2.0 (2016-01-05)

 		
 2.1.0 (2015-10-19)

 		
 2.0.0 (2015-10-14)

 		
 1.8.0 (2015-10-14)

 		
 1.7.0 (2015-09-21)

 		
 1.6.0 (2015-06-10)

 		
 1.5.0 (2015-05-18)

 		
 1.4.0 (2015-02-11)

 		
 1.3.0 (2014-12-31)

 		
 1.2.0 (2014-08-03)

 		
 1.1.1 (2014-07-04)

 		
 1.1.0 (2014-07-02)

 		
 1.0.0 (2014-02-11)

 		
 0.4.4 (2013-12-23)

 		
 0.4.3 (2013-10-22)

 		
 0.4.2 (2013-10-08)

 		
 0.4.1 (2013-09-24)

_static/up-pressed.png

_static/up.png

